

Optimising DPI Formulations

The influence of surface energy on the suitability of additional fines

DDL 2020 Christmas Lectures

Nicholas Bungert, Mirjam Kobler, Regina Scherließ Kiel University

Introduction – Formulation development

 \rightarrow Making drugs accessible via inhalation

Interactive blends – Addition of fines

Operating principles of additional fines

Operating principles Fundamentally based on adhesion strength

$$W_{adh}^{Total} = W_{adh}^d + W_{adh}^{ab} = 2 \times \sqrt{\gamma_{s1}^d \times \gamma_{s2}^d} + 2 \times \left[\sqrt{\gamma_{s1}^- \times \gamma_{s2}^+} + \sqrt{\gamma_{s1}^+ \times \gamma_{s2}^-}\right]$$

 $\gamma_s^d = Dispersive \ surface \ energy$ $\gamma_s^+ = Lewis - Acid$ $\gamma_s^- = Lewis - Base$

Which surface energy works best for fines?

InhaLac 230 (IH 230)

InhaLac 230 without intrinsic fines (IH 230rf)

Intrinsic fines of IH 230 (IH 230if) InhaLac 400 (IH 400) Expired InhaLac 400 (IH 400ex)

Ipratropium bromide (IP)

Particle size distributions

Data displayed as average of three measurements SD displayed by error bars

Surface energy data

IH 230rf		IH 230if		IH 400	IH	400ex
	γ_s^{D} [mJ/m²]		γ_s^{AB} [mJ/m²]		γ_s^{Total} [mJ/m²]	
	Min	Max	Min	Max	Min	Max
IH 230rf	34.3	43.0	22.6	32.6	56.9	75.6
IH 230if	37.3	44.4	27.0	37.7	63.7	82.1
IH 400	44.1	45.6	33.9	43.1	78.2	88.7
IH 400ex	36.0	44.9	24.9	42.1	60.1	87.0
IP	26.6	42.3	23.4	46.8	50.1	89.1

Data displayed as average of three measurements

Surface energy distributions

Data displayed as average of three measurements SD displayed by error bars

Experimental setup

Aerodynamic assessment

Blend	FPF < 5 μm	FPF < 3 μm	FPF < 1 μm
IH 230rf – IP	25.2 %	15.9 %	1.2 %
IH 230rf – IH 230if – IP	30.6 %	18.6 %	1.5 %
IH 230rf – IH 400ex – IP	41.5 %	24.7 %	1.7 %
IH 230rf – IH 400 – IP	45.7 %	31.9 %	2.3 %

Data displayed as average of three measurements using the Novolizer SD displayed by error bars

Aerodynamic assessment

Blend	FPF < 5 μm	FPF < 3 μm	
IH 230rf – IP	25.2 %		1 . 2 %
IH 230rf – IH 230if – IP	30.6 %	+ 21.6 % + 64	.9 %*** 5 %
IH 230rf – IH 400ex – IP	41.5 %	24.7 %	+ 81.7 %
IH 230rf – IH 400 – IP	45.7 %	31.9 %	* p-value ≤ 0.05; *** p-value ≤ 0.001

Data displayed as average of three measurements using the Novolizer SD displayed by error bars

Work of adhesion – Saturation of active sites

Work of adhesion – Fines binding on the carrier lactose

Work of adhesion – Formation of agglomerates

Work of adhesion - Drug particles binding on lactose

Conclusion

CAU

Stronger active site saturation

Formation of stronger agglomerates

Higher surface energies of fines lead to higher FPF of the respective blend

Thank you for your attention!

Please do not hesitate to get in touch:

Nicholas Bungert

Kiel University

Department of Pharmaceutics and Biopharmaceutics e-mail: nbungert@pharmazie.uni-kiel.de

