CRST – Excellence in proving your concept

1/5

Clinical Research Services Turku CRST – partnering with Turku PET Centre

- University-based CRO that conducts clinical, preclinical and bioanalytical studies for the pharmaceutical industry and for other customers
- ✓ Experienced in demanding phase 0-2 clinical trials and proof-of-concept studies
- ✓ Employing Positron Emission Tomography (PET) to assess efficacy and pharmacokinetics

CRST

Scientific and regulatory consultancy Medical writing, regulatory submissions Subject recruitment Investigators, study nurses and clinical wards with 24/7 safety monitoring In-house bioanalytical laboratory for analysis of PK and biomarker samples Clinical study monitoring Project management

Turku PET Centre

State-of-the-art PET imaging facilities

MRI, CT and ultrasound imaging

PET radiochemistry expertise with cyclotrons and GMP radiopharmaceutical laboratories

Extensive track record in pharma trials from preclinical to clinical

www.pet.fi

2/5

Valuable information for the advancement of CNS drug development programs

Unique benefits

- Detection of early signs of efficacy
- Confirmation of mode-of-action
- Dose guidance for Phase II/III studies
- Improved patient selection and stratification
- Monitoring of the time extent and course of drug binding

Useful applications

- Visualization and quantitation of CNS disease-specific biological targets and events
- Receptor/transporter occupancy after single or multiple doses of a test drug
- A broad range of disease and targetspecific tracers in Turku PET Centre

3/5

Applications for the clinical testing of Alzheimer's disease drugs

Several PET tracers are available for visualization and quantitation of

- beta-amyloid deposits
- glial inflammation markers in the brain
- cholinergic neurotransmission

Imaging approaches for treatments with other primary mechanisms of action

- Imaging of brain glucose consumption is possible with ¹⁸F-FDG
- Changes in many neurotransmitter and receptor systems may be investigated with the broad range of PET tracers available in Turku

4/5

Commonly used tracers for neurotransmitter receptors, transporters and enzymes

Target system	Tracer	Mechanism and target
Opioid system	¹¹ C-Carfentanil	µ-opioid receptor agonist
Neurokinin system	¹⁸ F-SPA-RQ	Neurokinin 1 (NK ₁) receptor antagonist
Monoamine oxidase B (MAO-B)	¹¹ C-Deprenyl	MAO-B ligand
GABAergic system	¹¹ C-Flumazenil	GABA _A -receptor antagonist
Cholinergic system	¹¹ C-Nicotine	Nicotinic receptor agonist
	¹¹ C-MP4A	Acetylcholinesterase (AChE) analog (for AChE activity studies)
	¹¹ C-MP4B	Butyrylcholinesterase (BChE) analog (for BChE activity studies)
Serotonergic system	¹¹ C-MADAM	Serotonin transporter (SERT) ligand
	¹¹ C-WAY100635	5-HT1 _A receptor antagonist
Adenosine system	¹¹ C-TMSX	Adenosine A _{2A} receptor antagonist
Dopaminergic system	¹⁸ F-DOPA	Dopamine precursor (dopamine synthesis and storage)
	¹¹ C-Raclopride	D ₂ /D ₃ receptor antagonist (for striatal receptors)
	¹¹ C-FLB457	D ₂ /D ₃ receptor antagonist (for extrastriatal/cortical receptors)
	¹¹ C-SCH22390	D_1/D_5 receptor antagonist (striatal and extrastriatal receptors)
	¹¹ C-PE2I	Dopamine transporter (DAT) ligand

5/5

Success stories of the utilization of PET imaging in CNS drug development

Occupancy study of antidepressant target in the brain of healthy volunteers – provided important guidance for dose level selection in Phase II trials and helped to reach a no-go decision before Phase III
 Bergström M et al., Biol Psychiatry 2004, 55:1007-12
 Link to MEDLINE: http://www.ncbi.nlm.nih.gov/pubmed/15121485
Occupancy study of therapeutic target in the brain of Alzheimer's patients and healthy control subjects – provided important information for Phase II dose selection
 Hirvonen J et al., Clin Pharmacol Ther 2009, 85:506-12
 Link to MEDLINE: http://www.ncbi.nlm.nih.gov/pubmed/19129751
Amyloid imaging study to assess efficacy of anti-amyloid therapy in Alzheimer's disease – suggested that the treatment has anti-amyloid efficacy and that ¹¹C-PiB PET imaging is useful in assessing the effects of potential anti-amyloid treatments in Alzheimer's disease

Rinne JO et al., Lancet Neurol 2010, 9:363-72 Link to MEDLINE: http://www.ncbi.nlm.nih.gov/pubmed/20189881